Modeling Calibration Standards

Mario Hellmich*

April 11, 2019

Symbols:

System impedance	Z_0
Frequency	f
Length of transmission line	ℓ
Propagation coefficient	γ
Offset delay	$\tau_{\rm offs}$
Offset loss	$L_{\rm offs}$
Offset impedance	$Z_{\rm offs}$

The one-port calibration standards are modeled as follows: The port of the standard is connected to a transmission line of length ℓ , which is terminated with a frequency dependent impedance $Z_{\rm T}$. The transmission line is exhaustively described by the parameters $Z_{\rm offs}$, $\tau_{\rm offs}$, and $L_{\rm offs}$. In fitting the model parameters to the measured data we shall assume that $Z_{\rm offs} = Z_0$. The derivation of this model from first principles as well as the assumptions and approximations that underlie the equations below are given in [1].

Impedance of the transmission line:

$$Z_{\rm c} = \left(Z_{\rm offs} + \frac{L_{\rm offs}}{4\pi f} \sqrt{\frac{f}{f_0}} \right) - \mathrm{i} \frac{L_{\rm offs}}{4\pi f} \sqrt{\frac{f}{f_0}}.$$

Product of propagation coefficient γ with the length ℓ of the line:

$$\gamma \ell = \frac{L_{\text{offs}} \tau_{\text{offs}}}{2Z_{\text{offs}}} \sqrt{\frac{f}{f_0}} + i \left(2\pi f \tau_{\text{offs}} + \frac{L_{\text{offs}} \tau_{\text{offs}}}{2Z_{\text{offs}}} \sqrt{\frac{f}{f_0}} \right),$$

where $f_0 = 10^9 \, \text{Hz}.$

Reflection coefficient corresponding to the impedance Z_c with respect to the system impedance Z_0 :

$$\Gamma_1 = \frac{Z_{\rm c} - Z_0}{Z_{\rm c} + Z_0}.$$

*mario.hellmich@web.de

Reflection coefficient corresponding to the impedance $Z_{\rm T}$ terminating the line, with respect to the system impedance Z_0 :

$$\Gamma_{\rm T} = \frac{Z_{\rm T} - Z_0}{Z_{\rm T} + Z_0}.$$

With these quantities the reflection coefficient at the port of the calibration standard (i. e., its S_{11}) can be written as:

$$\Gamma = \frac{\Gamma_1 \left(1 - e^{-2\gamma \ell} - \Gamma_1 \Gamma_T\right) + e^{-2\gamma \ell} \Gamma_T}{1 - \Gamma_1 \left(e^{-2\gamma \ell} \Gamma_1 + (1 - e^{-2\gamma \ell}) \Gamma_T\right)}.$$

For the open standard one chooses:

$$Z_{\rm T} = \frac{1}{2\pi i f \cdot C(f)} \quad \text{with } C(f) = C_0 + C_1 f + C_2 f^2 + C_3 f^3.$$

For the short standard one chooses:

$$Z_{\rm T} = 2\pi {\rm i} f \cdot L(f)$$
 with $L(f) = L_0 + L_1 f + L_2 f^2 + L_3 f^3$.

References

[1] Keysight Technologies: Specifying Calibration Standards and Kits for Keysight Vector Network Analyzers. Application Note 5989-4840EN.